首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10934篇
  免费   700篇
  国内免费   1721篇
化学   10615篇
晶体学   119篇
力学   175篇
综合类   7篇
数学   104篇
物理学   2335篇
  2024年   12篇
  2023年   903篇
  2022年   419篇
  2021年   479篇
  2020年   794篇
  2019年   421篇
  2018年   462篇
  2017年   591篇
  2016年   660篇
  2015年   662篇
  2014年   735篇
  2013年   892篇
  2012年   888篇
  2011年   641篇
  2010年   598篇
  2009年   611篇
  2008年   330篇
  2007年   490篇
  2006年   540篇
  2005年   339篇
  2004年   223篇
  2003年   286篇
  2002年   214篇
  2001年   351篇
  2000年   156篇
  1999年   280篇
  1998年   178篇
  1997年   90篇
  1996年   63篇
  1995年   10篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   12篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   8篇
  1984年   4篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
12.
Excessive consumption of substances such as food colorants, exposure to doses of metal ions, antibiotic residues and pesticides residues above maximum tolerance limit have a detrimental effect on human health. Hence in detecting these harmful substances, the development of sensitive, selective and convenient analytical tools is an essential step. Graphene and graphene like 2D graphitic carbon nitride have shown great promise in the development of electrochemical sensors for determining the levels of these substances in different samples. In this paper, graphene and graphene like 2D graphitic carbon nitride applications on the determination of various food colorants in foods and drinks such as azo dyes (tartrazine, allura red, amaranth, carmine and sunset yellow); metal ions contaminants, antibiotic and pesticide residues in the environment are reviewed.  相似文献   
13.
14.
DFT computations have been performed to investigate the mechanism of H2‐assisted chain transfer strategy to functionalize polypropylene via Zr‐catalyzed copolymerization of propylene and p‐methylstyrene (pMS). The study unveils the following: (i) propylene prefers 1,2‐insertion over 2,1‐insertion both kinetically and thermodynamically, explaining the observed 1,2‐insertion regioselectivity for propylene insertion. (ii) The 2,1‐inserion of pMS is kinetically less favorable but thermodynamically more favorable than 1,2‐insertion. The observation of 2,1‐insertion pMS at the end of polymer chain is due to thermodynamic control and that the barrier difference between the two insertion modes become smaller as the chain length becomes longer. (iii) The pMS insertion results in much higher barriers for subsequent either propylene or pMS insertion, which causes deactivation of the catalytic system. (iv) Small H2 can react with the deactivated [Zr]?pMS?PPn facilely, which displace functionalized pMS?PPn chain and regenerate [Zr]? H active catalyst to continue copolymerization. The effects of counterions are also discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 576–585  相似文献   
15.
Journal of Thermal Analysis and Calorimetry - A phosphazene-based flame retardant (PBFA) was synthesized by hexachlorocyclotriphosphazene and N-aminoethylpiperazine. To improve the flame retardancy...  相似文献   
16.
A photo-switchable hetero-complementary quadruple H-bonding array, which consists of an azobenzene-derived ureidopyrimidinone (UPy) module ( Azo-UPy ) and a nonphotoactive diamidonaphthyridine (DAN) derivative ( Napy-1 ), is constructed based on a reversible photo-locking approach. Upon UV (390 nm)/Vis (460 nm) light irradiations, photo-switchable quadruple H-bonded dimerization between Azo-UPy and Napy-1 can be achieved with exhibiting 4.8×104-fold differences in binding strength (ON/OFF ratios). Furthermore, smart polymeric gels with unique photo-controlled macroscopic self-assembly behavior can be fabricated by introducing such quadruple H-bonding array as photo-regulable noncovalent interfacial connections.  相似文献   
17.
Although tremendous efforts have been devoted to understanding the origin of boosted charge storage on heteroatom-doped carbons, none of the present studies has shown a whole landscape. Herein, by both experimental evidence and theoretical simulation, it is demonstrated that heteroatom doping not only results in a broadened operating voltage, but also successfully promotes the specific capacitance in aqueous supercapacitors. In particular, the electrolyte cations adsorbed on heteroatom-doped carbon can effectively inhibit hydrogen evolution reaction, a key step of water decomposition during the charging process, which broadens the voltage window of aqueous electrolytes even beyond the thermodynamic limit of water (1.23 V). Furthermore, the reduced adsorption energy of heteroatom-doped carbon consequently leads to more stored cations on the heteroatom-doped carbon surface, thus yielding a boosted charge storage performance.  相似文献   
18.
《中国化学快报》2020,31(12):3183-3189
Engineered nanomaterials have attracted significantly attention as one of the most promising antimicrobial agents for against multidrug resistant infections. The toxicological responses of nanomaterials are closely related to their physicochemical properties, and establishment of a structure-activity relationship for nanomaterials at the nano-bio interface is of great significance for deep understanding antibacterial toxicity mechanisms of nanomaterials and designing safer antibacterial nanomaterials. In this study, the antibacterial behaviors of well-defined crystallographic facets of a series of Au nanocrystals, including {100}-facet cubes, {110}-facet rhombic dodecahedra, {111}-facet octahedra, {221}-facet trisoctahedra and {720}-facet concave cubes, was investigated, using the model bacteria Staphylococcus aureus. We find that Au nanocrystals display substantial facet-dependent antibacterial activities. The low-index facets of cubes, octahedra, and rhombic dodecahedra show considerable antibacterial activity, whereas the high-index facets of trisoctahedra and concave cubes remained inert under biological conditions. This result is in stark contrast to the previous paradigm that the high-index facets were considered to have higher bioactivity as compared with low-index facets. The antibacterial mechanism studies have shown that the facet-dependent antibacterial behaviors of Au nanocrystals are mainly caused by differential bacterial membrane damage as well as inhibition of cellular enzymatic activity and energy metabolism. The faceted Au nanocrystals are unique in that they do not induce generation of reactive oxygen species, as validated for most antibiotics and antimicrobial nanostructures. Our findings may provide a deeper understanding of facet-dependent toxicological responses and suggest the complexities of the nanomaterial-cell interactions, shedding some light on the development of high performance Au nanomaterials-based antibacterial therapeutics.  相似文献   
19.
Using first principles density functional theory, we predict a monolayer B2Si structure with space group Pmm2 in the present work. This structure is confirmed to be dynamically stable. Based on the plane wave pseudopotential approach, the charge density, electron localization function, density of states, energy band, phonon property and thermal conductivity of Pmm2-B2Si are systematically studied. It is interesting that the sp2 hybridization and coordination bond of Si are found in Pmm2-B2Si, which is the most important factor for its structural stability. The density of states and energy band analysis reveals that Pmm2-B2Si is metallic because of the partial occupied Si 3pz and B 2pz states. Moreover, the acoustic-optical coupling is important for phonon transport in Pmm2-B2Si, and the contribution of optical modes to the lattice thermal conductivity along the [100] and [010] directions is 13% and 12%, respectively. This study gives a fundamental understanding of the structural, electronic and phonon properties in Pmm2-B2Si.  相似文献   
20.
The intermolecular interaction determines the photophysical properties of the organic aggregates, which are critical to the performance of organic photovoltaics. Here, excitonic coupling, an important intermolecular interaction in organic aggregates, between the π-stacking graphene quantum dots is studied by using transient absorption spectroscopy. We find that the spectral evolution of the ground state bleach arises from the dynamic variation of the excitonic coupling in the excited π-stacks. According to the spectral simulations, we demonstrate that the kinetics of the vibronic peak can be exploited as a probe to measure the dynamics of excitonic coupling in the excited π-stacks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号